At fixed q°(0) and ypay, an increase in max g°(y) leads to a sharp increase in the rate

of fracture. This is illustrated by the data in Fig. 7, where the first column shows the
number of cycles N at which the specified probability P(N) is attained for the base variant.
The second and third columns show the same for the base variant with maxq®(y) = 19.61 MPa

y

and max q%(y) = 49.03 MPa, respectively. It should be noted that with a further increase in
y
max q°(y), the probability P(N) is determined with a high degree of accuracy only by the in-
y

dicated maximum.

The results described above qualitatively — and in some cases quantitatively — agree
with experimental data. A direct comparison is generally difficult because of the paucity
of literature data showing the results of contact fatigue tests and the corresponding ini-
tial characteristics of the model examined here.

LITERATURE CITED

1. I. I. Kudish, "Mathematical model of fatigue fracture and wear,”" Zh. Prikl. Mekh. Tekh.
Fiz., No. 4 (1990).

2. I. I. Kudish, "Contact problem of the theory of elasticity for prestressed bodies with
cracks,'" ibid., No. 2 (1987).

3. Ya. N. Gladkii, V. N. Simin'kovich, G. A. Khasin, et al., "Effect of furnace and ladle
refining practice on the fatigue and fracture toughness of high-strength low-temper
steels," Fiz. Khim. Mekh. Mater., No. 4 (1978).

BUCKLING OF A NONLINEARLY ELASTIC SLAB LYING ON THE SURFACE OF A
LIQUID WITH ALLOWANCE FOR PHASE TRANSFORMATION

V. A. Eremeev UDC 539.3

The equations of the three-dimensional nonlinear theory of elasticity [1] are used to
formulate equilibrium conditions with finite strains for an arbitrary thermoelastic body
undergoing a phase transformation. These conditions are then used to study the equilibrium
of a circular uniform slab lying on the surface of a melt in a gravitational field. We use
the model of a non-Hookian material as the governing relation for the material of the slab,
this model being one possible generalization of the model of an incompressible linearly
elastic body to the case of finite strains. The method of superimposing a small strain on
a finite strain [1] is used to study local loss of stability of the slab due to its compres-
sion in the radial direction. The critical strains are determined numerically. A similar
approach is used to study buckling of the slab in the absence of phase transformation.

1. We will examine the equilibrium of a thermoelastic body undergoing a first-order
liquid—solid phase transformation. Similar transitions were studied within the framework of
continuum mechanics in [2-7], where various approaches were employed to obtain relations de-
scribing the phase transition at the phase boundary. A characteristic feature of the prob-
lem of the equilibrium of a thermoelastic body under phase-transformation conditions is the
presence of an a priori unknown phase boundary. As an auxiliary phase-transformation condi-
tion serving to determine the position of the phase boundary, we choose the equation of the
fusion curve [8]. This equation expresses the dependence of the melting point on pressure
in the liquid [8].

Let the volume occupied by the body in the reference configuration be equal to v. We
represent the external boundary of the body as the union of the surface Yy separating the
body from the liquid and the surface ¢ = 0; U 0, U o5 = 0, U 05 (Fig. 1). The body is de-
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Fig. 1

formed by body forces b and by loads d distributed over the surface ¢;. The displacements
are assigned on the surface 0,. Part of the boundary o5 is in contact with a smooth rigid
surface. The temperature ©, is assigned on the surface o,, while the heat flux s is assigned
on oj.

The equilibrium and heat-balance equations and the boundary conditions on the surface
o have the following form [1] for a nonlinearly thermoelastic body

v D + pb =0, y°-h® = 0,
n.Dl01=d, Rlaz'—_‘Rov H'D-(E—NN)|03=O,
n+«(R — r)l03 = 0, 9154 = 0, n.holUs =,

(1.1)

where V° is the gradient operator in the reference configuration; D is the Piola stress ten-
sor; h° is the Piola heat-flux vector; p, is the density of the material in the reference
configuration; r and R = R{r) are the position vectors of a point of the body in the initial
and deformed states; E is the unit tensor; n is a unit normal to the surface o; N is a unit
normal to the boundary of the body in the deformed state; © is temperature. The pressure

in the liquid p and its temperature can be determined from the equilibrium and heat-balance
equations, written in FEulerian coordinates [1, 9]:

—Vvp +p_b=0,V-h_=0,h=.f—1c'-".h0,.f=det c. (1.2)

Here p- is the density of the liquid; V is the gradient operator in Eulerian coordinates,
connected with V° by the formula vy = C*-y% h is the heat-flux vector; C = y’R is the
strain gradient. The boundary conditions for the liquid on surfaces different than Yy are
written in standard form [9] and are not further discussed.

At the phase boundary y we require satisfaction of compatibility conditions for the
temperature, stress, and heat-flux vectors in the solid and the liquid:

n-[D] =0, 0] =0, n-[h°] = 0. (1.3)

The brackets in (1.3) denote a sudden change in the corresponding quantity with the crossing
of y. The boundary condition for the stresses can be changed to a form corresponding to the
action of hydrostatic pressure p on the solid from the direction of the liquid [1]:

n-D = —pJjC1l.n. (1.4)

The condition of phase equilibrium in the equation of the fusion curve has the form {8}

Ol, = 0%(p) (1.5)
[6%(p) is a known function].

Let us examine a special case described by the above equations. Let the boundary con-
ditions be such that a uniform temperature field is realized in the solid: © = @°. If the
body is acted upon by body forces, then the pressure in the liquid will depend on the coordi-
nates. Thus, with equilibrium of a homogeneous incompressible fluid in a gravitational
field, pressure depends linearly on the vertical coordinate. In this case, the position of
the phase boundary can be found from a condition obtained by transformation of Eq. (1.5):

ply = p*©9). (1.6)

Here, p*(©) is the inverse of ©%(p). It follows from Eq. (1.6) that pressure is constant
on the phase boundary.
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2. Let us make use of Eqs. (1.1), (1.2), (1.4), and (1.6) to study the equilibrium
and stability of a heavy circular slab located in a uniform temperature field. The stabil-
ity of plates was studied in [10-13] on the basis of the three-dimensional nonlinear theory
of elasticity. In the ice-flow theory constructed in [14], the possibility of melting of
the ice was accounted for along with the other factors discussed above.

We will assume that the elastic slab lies on a layer of a homogeneous incompressible
fluid whose depth is assumed to be infinite. Radial displacements are assigned on the lat-
eral surface of the slab and shear stresses are absent. Similar boundary conditions were
examined in [10-13]. The top surface of the slab is not loaded, while in accordance with
(1.4) the bottom surface is loaded by hydrostatic pressure which comes from the direction
of the liquid and balances the weight of the slab. Similar boundary conditions can be re-
alized by placing the slab in a rigid smooth cylindrical yoke allowing displacement of the
slab in the vertical direction and permitting a change in its radius. In the reference con-
figuration, the slab occupies the volume 0 < r € a, ~h £ z £ 0. Here and below, r, z, and
¢ are Lagrangian cylindrical coordinates, a is the radius of the slab, and h is its thick-
ness. In the case of phase transformation, the thickness of the slab is determined by means
of phase equilibrium condition (1.6).

The constitutive law of the elastic body will be described using the model of a non-
Hookian material [1] D = 2uC — gCT (1 is the elastic constant}. The strain-independent
function q arises as a result of the incompressibility condition det € = 1, similarly to the
pressure function in the statics of incompressible fluids. Being an independent character-
istic of the stress state, this function is subject to determination together with the strain
field. In the case of small strains, a non-Hookian material obeys Hooke's law with the shear
modulus p and Poisson's ratio 1/2.

The pressure in a homogeneous incompressible medium located in a gravitational field
has the form [9]

p =p,— 0-gZ (2.1)

(py is a constant of integration; g is acceleration due to gravity). Here and below, R, Z,
and ¢ are Eulerian cylindrical coordinates. Since pressure at the phase boundary is constant
in accordance with (1.6), it follows from (2.1) that in a gravitational field the phase
boundary in the deformed state can be a horizontal plane

Z = const. (2.2)

We will examine the stress—strain state of a slab in which this state is plane. In
this case, the following formulas [12, 13} give a satisfactory incompressibility cendition

R=M @ =09, Z=02~" (2.3)

(A is a strain parameter characterizing the compression of the slab in the radial direction).
It is easily shown that transformation (2.3) satisfies the boundary conditions on the lateral
surface of the slab, while the equilibrium equations and boundary conditions on the ends of
the slab reduce to the form

d
dz D, — Pg =0, D, !z=0 =0, D, ’z:—h = — p*A?%

where D,, = —qA? + 2uA~2. We find from this equation that
Dz = 0ug? 4 = 9°(2) = 20~ — pygh=2, b = p*A%/(pyg). (2.4)

The last relation in (2.4), connecting the thickness of the slab h with the pressure at the
phase boundary p*, is the condition of equilibrium of a slab lying on a liquid surface and
can be obtained directly by analyzing the equations of hydrostatics [9]. In contrast to
problems concerning the equilibrium of floating bodies, in the present case the pressure
acting on the phase boundary is given and the thickness of the slab is determined.

3. The local stability of the equilibrium of a slab in a plane state will be studied
by the static method. This method entails finding equilibrium positions which differ little
from the prescribed position and determining the critical values of the strain parameter A

at which the linearized equilibrium equations and boundary conditions can have nontrivial
solutions.
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The axisymmetric deformation of the slab, describing its deviation from the plane state,
is written in the form {13]

R=MN+u(rz,® =9, Z =2L2%- v, 2). (3.1)

Written in Lagrangian coordinates so as to account for its change as a result of phase
transformation, the equation of the phase boundary also differs from the equation of a plane
z = —h + (). (3.2)

The function {(r) describes the change in the thickness of the slab caused by its melt-
ing or by crystallization of the liquid. Inserting (3.2) into the last relation of (3.1),
we obtain a relation which corresponds to (2.2) and connects the vertical displacement of
points of the bottom surface of the slab v with the function (:

Z|pmenyrmy = U(r, —h 4+ §(r))— A%k - A72[(r) = const. (3.3)

The linearized equations of equilibrium and compressibility and the boundary conditions
on the surface not in contact with the liquid are written in the form {1, 12, 13]

VD =0,CT..y'w =0, w = ue, + ve,,

eZ.D.,z=0 — 07 er'D.'ezI?':a = O’ er'D.'e(plr=a = O’ (3‘4)

ua,z) = 0,D" = 2uy'w — ¢C T 4+ ¢CT-yow?.c7T.
Here, w is the vector of the small additional displacements; D’ is the linearized Piola
stress tensor, describing the change in the stress state with the superposition of the addi-
tional displacements; q° is a small perturbation of the function q; C is the strain gradient
in the main stress state, determined by Egs. (2.3); e, e,, e, is an orthonormalized basis
connected with the Lagrangian cylindrical coordinates. The functions u, v, and q° completely

characterize the axisymmetric stress—strain state in the body of slab, this state differing
little from initial equilibrium strain state.

To obtain linearized equations for the phase boundary, we examine nonlinear boundary-
value problems (1.4), (3.3) with allowance for Egs. (3.1), (3.2). The normal vector to the
curved phase boundary determined by Eq. (3.2) is given by the relation

n=((_g_t_)z+1)-]/2<_%er+8z)- (3.5)

r

Using (3.5), at z = —h + {(r) we can change condition (1.4) to the form
ez-D——g—Eer-D=—-p*(ez.C_T_fg.er C—T), (3.6)

where

. 7 7] 7]
0= e )l ) e o2 2 o [ )
[, 8 a @
o) st o) e
_ 8 d — _ A a '

e.-C T=(7»—l-—f—)[(7»+—;ri)ez——a%erl, e.-C T=(l+%>[(x 2+5;—>er—7:—ez], qg=q°(z)+ g (r, 2).
In the case of the absence of a phase transformation ({ = 0), nonlinear relations (3.6) take
the form shown in [13]. If we keep no terms higher than the first degree for the unknown

functions u, v, q', and ¢ in (3.6) and we take (2.4) into account, we find linearized bound-
ary conditions at z = —h

w/0z — q'A2p — A~2(Aulor + u/r) + pegl/2p = 0, (3.7)
ouldz + A3gv/or — (A — A79)aC/or = 0.
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TABLE 1

B
- 0,01 0,05 0,1 0,2
oo | A A A A oo | o
1 0,9907 0,9813 0,9864 0,9733 10,9812 0,9641 0,971§ 0,9481
8,2 0,9664 0,9304 0,9643 0,9267 0,9616 0,9224 0,9567 0,9142
0:3 0,9240 0,8368 0,9227 0,8349 0,9210 0,8326 0,9178 0,8281
TABLE 2
|
T AF106 | ACe104 n Ii B oaso L n
|
l
0,005 9915 9957 12 i 0,04 9760 9876 2
0.01 9881 9939 7 | 006 | 9699 9847 2
0,02 9833 9914 4 L 0,08 9654 9817 1

The unknown perturbation of the phase boundary { can be determined by linearizing Eq.

(3.3)
Ao(r, —h) + L) = 0. (3.8)
Equation (3.8) makes it possible to exclude the unknown { from boundary conditions
(3.7), leading to the relations
0vl0z — q"A%2u — A-*(uldr - u/r)— 0ogA /2 = 0,
Ou/dz -+ Mov/ar = 0. (3.9)

We also obtain linearized boundary conditions for the bottom surface of the slab when
there is no phase transformation. In this case, the nonlinear boundary condition correspond-
ing to (1.4) and assigned at z = —h has the form

-7
ez-Dﬁ—pez'C ] (3.10)

where the pressure p is given by Egs. (2.1), (3.1) and the remaining expressions are deter-
mined as they were in (3.6). Linearization of (3.10) leads to the equations

20v/0z — Aqi2p — p_ghtw/2p = 0, du/dz + A°dv/or = 0.,

(3.11)
Following [12, 13], we seek the solution of Eqs. (3.4) in the form
(2 = X Un(@ T, (aria), v, 2) = Vo(a) + 3 Va(2) Ty (arfa),
n=1 n=1
(3.12)

09 = Q) = 3 00 @), rarl0)

(v, are roots of the Bessel function J;). The functions V,(z), Q,(z) correspond to small
strains of the slab which are independent of the radial coordinate. Having chosen such a
solution, we find that the boundary conditions on the lateral surface are satisfied identi-
cally. As in [10, 12, 13], we will be interested mainly in modes of instability accompanied
by bending of the slab. Insertion of (3.12) into (3.4), (3.9) and (3.4), (3.11) leads to a
linear homogeneous boundary-value problem for a system of ordinary differential equations

relative to the functions V,(z), Q,(z), U,(z), Vy(z), Q,(z). The general solution of this
system is given by the formulas

Va(z) = Cichanz + Cyshanz + C ch% +C, slla%’:,
A IS
2 d .
Un(2) = —=— o Va(2), Qu(z) = —alicha.s — al,shayz +

v
an
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VO (Z) = C(I)v QO (Z) = Cg' an = Ynla, o= pog/?.p.

Inserting the resulting solution into the boundary conditions with z = 0, z = —h, we arrive
at a homogeneous system of linear algebraic equations for determination of the constants of
integration Co', Co', Cx (k =1, ..., 4). It can be shown that C,', C,;" are equal to zero.

Critical values of the strain parameter A,* obtained with allowance for phase transfor-
mation were determined numerically from the condition that the system of equations for Cy
have a nontrivial solution. We also calculated critical values of the strain parameter A’
in the absence of phase transformation. The largest values of Ap*, A,' (n =1, 2, ...) will

be designated as A%, A'. These maxima correspond to the smallest forces that can be applied
to the lateral surface of the slab and still cause buckling to occur. The calculations
showed that it is always the case that A* < X', This indicates that allowance for phase

transformation in the given problem leads to an increase in the critical loads and strains
at which the slab becomes unstable, i.e., phase transformations have a stabilizing effect.
Tables 1 and 2 show values of A% and A' for different relative thicknesses h = h/a and dif-
ferent values-of the parameter R = pyga/2u, characterizing the effect of gravity. The form
of the slab after loss of stability is determined by the number n. The number of the buck-
ling mode which corresponds to the values of A%, A' shown in Table 1 is n = 1. For suffi-
ciently thin slabs, the lowest critical loads correspond to a buckling-mode number n > 1.
This distinguishes the present problem, accounting for the effect of gravity and the liquid,
from the results obtained in [10, 12, 13] (where n was always equal to unity). Table 2
shows values of A* and X' and the corresponding numbers n with B = 0.1. Figure 2 shows the
dependence of A,* and A,' onn at B = 0.1l and b = 0.01 and 0.1 (curves 1, 2). The solid
lines show the dependence of A* on n, while the dashed lines show the dependence of X' on n.
Figure 3 shows the dependence of A* and A' on thickness with B = 0.1 (lines 1 and 2).

We thank L. M. Zubov for his help in conducting this investigation.
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BEGINNING OF PLASTIC YIELDING IN A STRESS CONCENTRATION ZONE

M. A. Legan UDC 539.214;539.374:539.375

Classical strength criteria are currently being widely used in the strength design of
structural elements. Here, it is assumed that plastic yielding begins when, in accordance
with the chosen criterion, the limiting stress state is attained at even one (the most heavily
stressed) point of the structure. However, these criteria do not always consider how the be-
ginning of plastic flow is affected by the nonuniformity of the stress distribution near the
point of greatest stress.

The subject of the effect of nonuniformity of the stress state on the yield point in
the region where the stresses are maximal has long been of interest to researchers [1-3].
Subsequent to [1-3], investigators made use of the gradient approach proposed in [1] to eval-
uate this nonuniformity and its effect on the local yield point at the most heavily stressed
point of the body [4-6]. Signs of plastic flow in the region of maximum stresses were con-
sidered to be the appearance of Luders' lines in specimens of mild steel {1] and deviations
from elastic strain laws detected by strain gauges or other means [4, 5]. It was noted that
these indications of plastic yielding are manifest when the stresses at the most heavily
stressed point exceed the yield point in a uniform stress state o,. Recent experiments have
detected deviations from elastic strain laws by the highly sensitive method of holographic
interferometry [7, 8]. These experiments have also confirmed that there is an increase in
the local yield point at the most heavily stressed point of the body. The results that were
obtained were used as a basis for proposing a gradient criterion for the onset of plastic
flow in a nonuniform stress state [9-11].

In the present study, we use the example of the tension of a plate with an elliptical
hole to examine the range of validity of the gradient criterion and the continuum model in
the case of very small holes. We note that there is a connection between this criterion and
the structure of the material, and we show that the criterion actually reflects the energy

dependence of the beginning of plastic flow for a fairly broad range of stress-concentration
factors and hole sizes.

1. Range of Validity of the Gradient Criterion and the Continuum Model in the Case of
Very Small Holes. In accordance with the gradient criterion, in a nonuniform stress state
plastic strains occur only when an equivalent stress — let this be the stress intensity gi —
at the most heavily stressed point of the given body ;WX exceeds oy and reaches the local
yield point oygz

% 7 1 max
Gy=0'y(1 +V LG/o} ) (1.1)

Here, G = |grad cil is the modulus of the gradient of o at the point subject to the greatest

v
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